Shakuntala Dev.pdf - Free download Ebook, Handbook, Textbook, User Guide PDF files on the internet quickly and easily. HOME; Download: Shakuntala Dev.pdf. Similar searches: Shakuntala Dev Figuring The Joy Of Numbers Shakuntala Devi Pdf Puzzle To Puzzle You By Shakuntala Devi. Sep 29, 2015 Shakuntala Devi firmly believes that mathematics can be great fun for everybody. The 150 puzzles included in this book are enjoyable excercises in reason intended to' sharpen your wits. Not only would you enjoy pitting yourself against the author's ingenuity but the puzzles would also provide great party entertainment for your family and friends.
Match your wits with the 'human computer'. Shakuntaia Devi PUZZLES TO PUZZLE YOU ORIENT ^PAPERBACKS
Pozzies to Puzzle You Mathematics is not always hard, mind-boggling stuff, it can also be simple, interesting and delightful. Many famous mathematicians are known to be devoted to peg-jumping puzzles, and it is perhaps this kind cf play that leads them on to scientific discoveries. The puzzles presented in this book are by none other than the world-renowned mathematical prodigy, Shakuntala Devi. These are meant to develop one's wit and sharpen his intellectual faculties. There is adventure, excitement and delight in them—and also purposefni entertainment. f Shakuntala Devi has been regarded by the West as an 'authentic heroine of the twentieth century'. She calculates faster than the fastest computer, and her feats have flabbergasted those who have witnessed them. She also writes—on subjects as varied as mathematics, crime and homosexuality.
By the same author in ORIENT PAPERBACKS • Perfect Murder
PUZZLES TO PUZZLE YOU Shakuntala Devi ORIENT PAPERBACKS
First Published: 1976 Reprinted : 1980 Puzzles to Puzzle You © Shakuntala Devi, 1979 Published by Orient Paperbacks (A Division of Vision Books Private Limited) 36-C, Connaught Place, New Delhi 110001 PRINTED IN INDIA at Batra Art Printer! A 86/1, Naraina Industrial Area, Phase I New DeIhi-110 028
'Amusement is one of the fields of applied mathematics —W. F. White
i i I
PREFACE What is mathematics? It is only a systematic effort of solving puzzles posed by nature. Recreational mathematics, in a way, is pure mathe- matics and it is often difficult to distinguish pure mathe- matics from recreational mathematics. However, it may also be considered applied mathematics in the sense it satisfies the human need for intellectual play. And solving wits and puzzles, in a way, helps to develop wit and ingenuity. The pedagogic value of recreational mathematics is now widely recognised and creative mathematicians are never embarrassed to show their interest in recreational topics. Today one finds an increasing emphasis on it in journa's published for mathematical instructors and in modern text books. It is said that the famous mathematician Leibniz devoted considerable time to the study of peg-jumping puzzles. And it is also a well known fact that Prof. Albert Einstein's bookshelf was stacked with books on mathematical games and puzzles. It is creative thoughts bestowed on such mathematical play, that has led many a great mind to scientific discoveries. While solving of the mathematical puzzles and riddles may provide pleasant relaxation to some, undoubtedly these items have a way of hooking the students' interest as little else can. So ;ne of the puzzles I am posing in the following 7
pages show very elegant facts and proofs in mathematics. Many who, consider the subject dull and boring will see that some facts of mathematics can be quite simple, in- teresting and even beautiful. These are not riddles made to deceive, or nonsensical puzzles which are made to tease the mind without purpose. The puzzles included in this book are straightforward exercises in reason and statement of facts from which a person with reasonably agile mind can proceed to a logical conclusion. I have no doubt my readers will find adventure, ex- citement, and delight in cracking the clean, sharply defined, and mysterious order that underly the puzzles, and experience enormous intellectual entertainment. —Shakuntala Devi 8
J)uzzlcs
1. TALL MEN NEXT DOOR Next door to me live four brothers of different heights. Their average height is 74 inches, and the difference in heipht among the first three men is two inches/'The difference between the third and the fourth man is six inches. Can you tell how tall is each brother? 2. A MATTER OF TIME Fifty minutes ago if it was four times as many minutes past three o'clock, how many minutes is it until six o'cfock? 11
3. BROTHERS AND SISTERS A family I know has several children. Each boy in this family has as many suters as brothers but each of the girls has twice as many brothers as sisters. How many brothers and sisters are there? 4. AROUND THE EQUATOR Two identical trains, at the equator start travelling round the world in opposite directions. They start to- gether, run at the same speed and are on different tracks. Which train will wear out its wheel treads first? 5. OVER THE GOLDEN GATE While in San Francisco some time back, I hired a car to drive over the Golden Gate bridge. 1 started in the ; fternoon when there was no traffic rush. So I could do 40 miles an hour. While returning, however, I got caught in the traffic rush and I could only manage to drive at a speed of 25 miles an hour. What was my average speed for the round trip? 12
6. BICYCLE THIEVES A friend of mine runs a bicycle shop and he narrated to me this following story: A man, who looked like a tourist, came to his shop one day and bought a bicycle from him for Rs. 350. The cost price of the bicycle was Rs. 300. So my friend was happy that he had made a profit of Rs. 50 on the sale. However, at the time of settling the bill, the tourist offered to pay in travellers cheques as he had no cash money with him. My friend hesitated. He had no arrangements with the banks to encash travellers cheques. But he remembered that the shopkeeper next door had such a provision, and so he took the cheques to his friend next door and got cash from him. The travellers cheques were ^11 made out for Rs. 100 each and so he had taken four cheques from the tourist totalling to Rs. 400! On encashing them my friend paid back the tourist the balance of Rs. 50. The tourist happily climbed the bicycle and pedalled away whistling a tune. However, the next morning my friend's neighbour, who had taken the travellers cheques to the bank, called on him and returning the cheques which had proved value- less demanded the refund of his money. My friend quietly refunded the money to his neighbour and tried to trace the tourist who had given him the bad cheques and taken away his bicycle. But the tourist could not be found. How much did my friend lose altogether in this un- fortunate transaction? 13
7. THE DIGITS AND SQUARE NUMBERS All the nine digits are arranged here so as to form four square numbers: 9, 81, 324, 576 How would you put them together so as to form a single smallest possible square number and a single largest possible square number? 8. THE BUS NUMBER While visiting a small town in the United States, I lost my overcoat in a bus. When I reported the matter to the bus company I was asked the number of the bus. Though I did not remember the exact number I did remember that the bus number bad a certain peculiarity about it. The number plate showed the bus number as a perfect square and also if the plate was turned upside down.? the number would still be a perfect square—of course it was not? I came to know from the bus company they had only five hundred buses numbered from 1 to S00. From this I was able to deduce the bus number. Can you tell what was the other number? 14
9. THE HOUR HAND AND THE MINUTE HAND We all know that the hour hand and the minute hand on a clock travel at different speeds. However there are certain occasions when the hands are exactly opposite each other. Can you give a simple formula for calculating the times of these occasions? 10. TO CATCH A THIEF Some time back while in England I watched a case in a criminal court. A man was being accused of having stolen certain valuable jewels and trying to run away with them, when he was caught by a smart police officer who overtook him. In cross examination the lawyer for accused asked the police officer how he could catch up with the accused who was already seven steps ahead of him, when he started to run after him. 'Yes Sir.' The officer replied. 'He takes eight steps to every five of mine ! 'But then officer,' interrogated the lawyer, 'how did you ever catch him. if that was the case?' 'That's easily explained sir,' replied the officer, *I got a longer stride.. two of my steps equal in length to his five. So the number of steps 1 required were fewer than his. and this brought me to the spot where I captured him.' A member of the jury, who was particularly good at quick calculations did some checking and figured out the number of steps the police officer must have taken. Can you also find out how many steps the officer * needed to catch up with the thief? IS
11. THE GONG Supposing a clock takes 7 seconds to strike 7, how long does it take for the same clock to strike 10? 12. SOMETHING FOR THE MARMALADE A little girl I know sells orange^ from door to door. One day while on her rounds she sold i an orange more than half her oranges to the first customer. To the second customer she sold i an orange more than half of the remainder and to the third and the last customer she sold i an orange more than half she now had, leaving her none. Can you tell the number of oranges she originally had? Oh, by the way, she never had to cut an orange. 16
13. THE COUNTERFEIT NOTE While walking down the street, one morning, I found a hundred rupee note on the footpath. I picked it up, noted the number and took it home. In the afternoon the plumber called on me to collect his bill. As I had no other money at home, I settled his account with the hundred rupee note I had found. Later I came to know that the plumber paid the note to his milkman to settle his monthly account, who paid it to his tailor for the garments he had had made. The tailor in turn used the money to buy an old sewing machine, from a woman who lives in my neigh- bourhood. This woman incidentally, had borrowed a hundred rupees from me sometime back to buy a pressure cooker. She, remembering that she owed me a hundred rupees, came and paid the debt. I recognised the note as the one I had found on the footpath, and on careful examination I discovered that the bill was counterfeit. How much was lost in the whole transaction and by whom? 14. COTTON OR GOLD Which would you say is heavier, a pound of cotton or a pound of gold? 1?
15, NUTS FOR THE NUTS Last time I visited a friend's farm near Bangalore he gave me a bag containing 1000 peanuts. From this I took out 230 peanuts for use in my own home and gave away the bag with the remainder of peanuts to three little brothers who live in my neighbourhood and told them to distribute the nuts between themselves in proportion to their ages—rwhich together amounted to 1 years. Tinku, Rinku and Jojo, the three brothers, divided the nuts in the following manner: As often as Tinku took four Rinku took three and as often as Tinku took six Jojo took seven. With this data can you find out what were the respec- tive ages of the boys and how many nuts each got? 16. THE WEDDING ANNIVERSARY Recently I attended the twelfth wedding anniversary celebrations of my good friends Mohini and Jayant. Beaming with pride Jayant looked at his wife and com- mented, 'At the time we were married Mohini was ~ of my age, but now she is only ~e~th. We began to wonder how old the couple must have been each at the time of their marriage! Dual streaming is required for html viewing google chrome. Can you figure it out? 18
17. I'LL GET IT FOR YOU WHOLESALE.. A wholesale merchant came to me one day and posed this problem. Every day in his business he has to weigh amounts from one pound to one hundred and twenty- one pounds, to the nearest pound. To do this, what is the minimum number of weights he needs and how heavy should each weight be7 18. THE BROKEN GLASSES My friend Asha was throwing a very grand party and wanted to borrow from me 100 wine glasses. I decided to send them through my boy servant Harish. Just to give an incentive to Harish to deliver the glasses intact I offered him 3 paise for every glass delivered safely and threatened to forefeit 9 paise for«very glass he broke. On settlement Harish received Rs 2.40 from me. How many glasses did Harish break? 19
19. 'THE PECULIAR NUMBER There is a number which is very peculiar. This num- ber is three times the sum of its digits. Can you find the number. 20. MAKE A CENTURY There are eleven different ways of writing 100 in tha form of mixed numbers using all the nine digits once and only once. Ten-of the ways have two figures in the integ- ral part of the number, but the eleventh expression has only one figure there. Can you find all the eleven expressions? 20
21. THE PERPLEXED POSTAL CLERK My friend Shuba works in a post office and she sells stamps. One day a man walked in and slamming seventy- five paise on the counter requested, 'Please give me some 2 paise stamps, six times as many one paisa stamps, and for the rest of the amount make up some 5 paise stamps.' The bewildered Shuba thought for a few moments and finally she handed over the exact fulfilment of the order to the man—with a smile. How would you have handled the situation? 22. THE MYSTERY OF THE MISSING PAISA Two women were selling marbles in the market place —one at three for a paise and other at two for a paise. One day both of them were obliged to return home when each had thirty marbles unsold. They put together the two lots of marbles and handing them over to a friend asked her to sell them at five for 2 paise. According to their calculation, after all, 3 for one paise and 2 for one paise was exactly the same as 5 for 2 paise. But when the takings were handed over to them, they were both most surprised, because the entire lot together had fetched only 24 paisel If however, they had sold their marbles separately they would have fetched 25 paise. Now where did the one paise go? Can you explain the mystery? 21
WALKING BACK TO HAPPINESS A man I know, who lives in my neighbourhood, travels to Chinsura every day for his work. His wife drives him over to Howrah Station every morning and in the evening exactly at 6 P.M. she picks him up back at the station and takes him home. One day he was let off at work an hour earlier, and so he arrived at the Howrah Station at 5 P.M. instead of at 6. He started walking home. However he met h» wife enroute to the station and got into the car. They drove home arriving 10 minutes earlier than usual. How long did the man have to walk, before he was picked up by his wife? 24. ON THE LINE It is a small town railway station and there are 25 stations on that line. At each of the 25 stations the passengers can get tickets for any of the others 24 stations. How many different kinds of tickets do you think the booking clerk has to keep? 22
25. THE LEGACY When my unclc in Madura died recently, he left a will, instructing his executors to divide his estate of Rs. 1,920,000 in this manner: Every son should receive three times as much as a daughter, and that every daughter should get twice as much as their mother. What is my aunt's share? 26. THE ROUND TABLE We have a circular dining table made of marble which has come down to us as a family heirloom. Ws also have some beautiful bone-china saucers that I recently brought from Japan. Our table top is fifteen times the diameter of our saucers which are also circular. We would like to place the saucers on the table so that they neither over lap each other nor the edge of the table. How many can we place in this manner?^ 23
27. DOWN THE ESCALATOR Recently, while in London, I decided to walk down the escalator of a tube station. I did some quick cal- culations in my mind. I found that if I walk down twenty-six steps, I require thirty seconds to reach the bottom. However, if I am able to step down thirty-four stairs I would only require eighteen seconds to get to the bottom. If the time is measured from the moment the top step begins to descend to the time I step off the last step at the bottom, can you tell the height of the stairway in steps? 28. THE CHESS BOARD We all know that a chess board has 64 squares. This can be completely covered by 32 cardboard rectangles, each cardboard covering just 2 squares.* Supposing we remove 2 squares of the chess board at diagonally opposite corners, can we cover the modified board with 31 rectangles? If it can be done how can we do it? And if it cannot be done, prove it impossible. 24
29. THE GAME OF CATS AND MICE A number of cats got together and decided to kill between them 999919 mice. Every cat killed an equal number of mice. How many cats do you think there were? Ob, by the way let me clarify just two points—it is not one cat killed the lot, because I have said 'Cats' and it is not-999919 cats each killed one mouse, because I have used the word 'mice'. I can give you just one clue—each cat killed more mice than there were cats. 30. THE WHEELS A friend of mine in Bangalore owns a horse-driven carriage. It was found that the fore wheels of the carriage make four more revolutions than the hind wheel in going 96 feet. However, it was also found that ijf the circum- ference of the fore wheel were j- as great and of the hind wheel ~ as great, then the fore wheel would make only 2 revolutions more than the hind wheel in going the same distance of % feet. Can you find the circumference of each wheel? 25
31. BLOW HOT BLOW COLD It is a matter of common knowledge that 0°C is the same as 32°F. It is also a known fact that 100°C equals 212°F. But there is & temperature that gives the same reading on both Centigrade and Fahrenheit scales. Can you find this temperature? 32. THE LLAMA RACE Recently, while I was in a holiday resort in Peru I watched a very interesting spectacle. Two gentlemen by the name of Sr. Guittierez and Sr. Ibanez decided to have a Llama race over the mile course on the beach sands. They requested me and some of my other friends whom I had met at the resort to act as the judges. We stationed ourselves at different points on the course, which was marked off in quarter miles. But, the two Llamas, being good friends decided not to part company, and ran together the whole way. How- ever, we the judges, noted with interest the following results: The Llamas ran the first three quarters in six and three quarters minutes. They took the same time to run the first half mile as the second half. And they ran the third quarter in exactly the same time as the last quarter. From these results I became very much interested in finding out just how long it took those two Llamas to run the whole mile. Can you find out the answer? 26
33. THE SHATTERED CLOCK A clock with the hours round the face in Roman block numerals, as illustrated in the sketch fell down, and the dial broke into four parts. The numerals in each part in every case summed to a total of 20. Can you show how the four parts of the clock face was broken? 27
34. THE PAINTED WINDOW My room has a square window of 4 feet across and 4 feet down. I decided to get only half the area of the window painted. Even after the painting I found that the clear part of the window still remained a square and still measured 4 feet from top to bottom and 4 feet from side to side. How is it possible? 35. ANIMALS ON THE FARM My friend who owns a farm near Bangalore has five droves of animals on his farm consisting of cows, sheep and pigs with the same number of animals in each drove. One day he decided to sell them all and sold them to eight dealers. Each of the eight dealers bought the same number of animals and paid at the rate of Rs. 17 for each cow, Rs. 2 for each sheep and Rs. 2 for each pig. My friend recieved from the dealers in total Rs. 301. How many animals in all did he have and how many of each kind? 28
36. WHICH IS THE BETTER BARGAIN? Recently while shopping in New Market in Calcutta, I came across two very nice frocks selling at a discount. I decided to buy one of them for my little girl Mammu. The shopkeeper offered me one of the frocks for Rs. 35 usually selling for ~of that price and the other one for Rs. 30 usually selling for ~e of that price. Of the two frocks which one do you think is a better bargain and by how much per cent? 37. WALKING ALL THE WAY One day I decided to walk all the way from Bangalore to Tumkur. I started exactly at noon. And someone I know in Tumkur decided to walk all the way to Bangalore from Tumkur and she started exactly at 2 JP.M., on the same day. We met on the Bangalore-Tumkur Road at five past four, and we both reached our destination at exactly the same time. At what time did we both arrive? 29
38. , THE TRAIN AND THE CYCLIST A railway track runs parallel to a road until a bend brings the road to a level crossing. A cyclist rides along to work along the road every day at a constant speed of 12 miles per hour. He normally meets a train that travels in the same direction at the crossing. One day he was late by 25 minutes and met the train 6 miles ahead of the level crossing. Can you figure out the speed of the train? 39. SOMETHING FOR PROFIT A friend of mine bought a used pressure cooker for Rs. 60. She somehow did not find it useful and so when a • friend of hers offered her Rs. 70 she sold it to her. However, she felt bad after selling it and decided to buy it back from her friend' by offering her Rs. 80. After having bought it ooce again she felt that she did not really need the cooker. So she sold it at the auction for Rs. 90. How much profit did she make? Did she at all make any profit? 30
40. THE DIGITAL GAME There is a number, the second digit of which is smaller than its first digit by 4, and if the number was divided by the digits sum, the quotient would be 7. Can you find the number? 41. THE NUMBER AND THE SQUARE 1 9 2 3 8 4 5 7 6 In the diagram above the numbers from I to 9 are arranged in a square in such a way that the number in the second row is twice that in the first row and the number in the bottom row three times that in the top row. I am told that there are three other ways of arranging the numbers so as to produce the same result. Can you find the other three ways? 31
42. THE FAULTY MACHINE A factory manufacturing flywheels for racing cars has ten machines to make them. The manufacturer knows the correct weight for a flywheel. However, one day one of the machines begins to pro- duce faulty parts—either overweight or underweight. How can the manufacturer find the faulty machine in only two weighings? 43. SQUARES AND RIGHT ANGLES Can you make 2 squares and 4 rightangled triangles using only 8 straight lines? 32
44. THE DISHONEST MERCHANT An unscrupulous trader decided to make some extra profit oo Coffee. He bought one type of coffee powder at Rs. 32 a kilo and mixed some of it with a better quality of coffee powder bought at Rs. 40 a kilo, and he sold the blend at 43 a kilo. That gave him a profit of 25 per cent on the cost. How many kilos of each kind must he use to make a blend of a hundred kilos weight? 45. FOR THE CHARITIES One day when I was walking on the road in New Delhi, a group of boys approached me for donation for their poor boys' fund. I gave them a rupee more than half the money I had in my purse. I must have walked a few more yards when a group of women approaphed me for donations for an orpbange. I gave them two rupees more than half the money I had in my purse. Then, after a few yards I was approached by a religious group for a donation to the temple they were building. .1 gave them three rupees more than half of what I had in my purse. At last when returned to my hotel room, I found that I had only one rupee remaining in my purse. How much money did I have in my purse when I started? 33
46. THE NUMBER GAME 0 The product of three consecutive numbers when divi- ded by each of them in turn, the sum of the three quo- tients will be 74. What are the numbers? 47. THE SARI AND THE BLOUSE I bought ft sari and a blouse for Rs. 110 at the New *Market. The sari cost Rs. 100 more than the blouse, how much does the sari cost? 34
48. WHEN WAS HE BORN? Some months back, this year, I was waiking through the Central Park in New York. I saw an intelligent looking little boy playing all by himself on the grass. I decided to talk to him and just as an excuse to start the conversation I asked him his age. A mischivious glint flickered in his eyes and he replied, 'Two days back I was ten years old, and next year I shall be thirteen. If you know what's today you'll be able to figure out my birthday and that'll give you my age.' I looked at him bewildered. How old was the boy? 49. the WEIGHT OF THE BLOCK A cement block balances evenly in the scales with three quarters of a pound and three quarters of a block. What is the weight of the whole block. / 37
50. LUCRATIVE BUSINESS Two unemployed young men decided to start a business together. They pooled in their savings, which came to Rs 2,000. They were both lucky, their business pros- pered and they were able to increase (heir capital by 50 per cent every three years. How much did they have in all at the end of eighteen years. 51. THE OLD SHIP Some years back I was travelling by a cargo ship from New Zealand to Tahiti. I was curious to look around the ship one day and in the boiler room I asked a man how old the ship was. He smiled and replied me in this way: 'The ship is twice as old as its boiler was when the ship was as old as the boiler is now. And the combined age of the ship and the boiler is thirty years.' Can you figure out what is the age of the ship and of the boiler? 36
52- THE THREE CONTAINERS We have three containers which hold 19, 13 and 7 ounces of liquid respectively. The 19 ounce container is empty but the 13 and 7 ounce containers are full. How can we measure out 10 ounces by using only the three above mentioned containers? 53. ON THE WAY TO MARKET One morning I^was^n my way to the market and met a man ^wEo hm A wives. *Each of the wives had 4 bags containing 4 dogs and each dog had 4 puppys. Taking all things into consideration how many were going to market? 37
54. A MATTER OF DENOMINATOR A fraction has the denominator greater than its numerator by 6. But if you add 8 to the denominator, the value of the fraction would then become 1. Can you find this fraction? 55. RIGHT FOOT FORWARD A short man takes three steps to a tall man's two steps. They both start out on the left foot. How many steps do they have to take before they are both stepping out on the right foot together? *
56. A PROBLEM OF SOCKS Mammu wears socks of two different colours—white and brown. She keeps them all in the same drawer in a state of complete disorder. She has altogether 20 white socks and 20 brown socks in the drawer. Supposing she has to take out the socks in the dark, how many must she take out of the drawer to be sure that she has a matching pair? 57. A FAIR DIVISION A rich farmer died leaving behind a hundred acres of his farm to be divided among his three daughters Rashmi, Mala and Rekha—in the proportion of one-third, cne- fourth and one-fifth respectively/ But Rekha died unex- pectedly. Now how should the executor divide the land between Rashmi and Mala in a fair manner? / 39
58. HEADS I WIN TAILS I LOOSE Durisg my last visit to Las Vegas in the U.S.A., I met a man who was an inveterate gambler. He took out a coin from his pocket and said to me, 'Heads I win, tails I loose. I'll bet half the money in my pocket.' He tossed the coin, lost and gave me half the money in his pocket. He repeated the bet again and again each time offering half the money in his pocket. The game went on for quite some time. I can't re- collect exactly how long the game went on or how many times the coin was tossed, but I do remember that the times he lost was exactly equal to the number of times that he won. What do you think, did he, on the whole, gain or loose? 40
59. MATHEMATICS AND LITERATURE Recently a publishing company which specialises in mathe- matical books, advertised the job opening of an assistant editor. The response was good. One hundred people applied for the position. The company, however, wanted to make their selection from the applicants who had some training in both mathematics and literature. Of the one hundred applicants the company found that 10 of them had had no training in mathematics and no training in literature. Seventy of them had had some mathematical training and 82 had had some in literature. How many applicant shad had training in both mathe- matics and literature? 60. PROBLEM FROM LILAVATI Here is an ancient problem from Bhaskaracharya's Lilavati: Beautiful maiden, with beaming eyes, tell me which is the number that, multiplied by 3, then increased by three- fourths of the product, divided by 7, diminished by one- third of the quotient, multiplied by itself, diminished by 52, the square root found, addition of 8, division by 10 gives the number 2? Well, it sounds complicated, doesn't it? No, not if you know how to go about it. 41
61. UP THE LADDER A man wafts to reach up a window 40 ft. from the ground. The distance from the foot of the ladder to the wall is 9 feet. How long should the ladder be? 62. PIGS AND DUCKS While driving through the countryside one day I saw a farmer tending his pigs and ducks in his yard. I was cu- rious to know how many of each he had. I stopped the car and inquired. Leaning on the stile jovially, he replied,'I have alto- gether 60 eyes and 86 feet between them.' I drove off trying to calculate in my mind the exact number of ducks and pigs he had. What do you think is the answer? 42
63. THE EGG VENDOR AND HIS EGGS Rasool, the man who delivers eggs to my home everyday, did not turn up one day. So when he came the next morning I demanded an explanation from him. He told me the following story: The previous morning when he just came out of the house carrying a basketful of eggs oh his head to start his daily rounds and stepped on to the street, a car going full speed brushed against him and knocked down his basket destroying all the eggs. The driver, however, a thorough gentleman admitted his responsibility and offered to compensate him for'damages. But Rasool could not remember the exact number of eggs he had, but he estimated the number at between 50 and 100. He was also able to tell the gentleman that if the eggs were counted by 2's and 3's at a time, none would be left, but if counted by S's at a time, 3 would remain, and that he sold the eggs at SO paise a piece. ' The gentleman made some quick calculations and paid Rasool adequately. How much did the gentleman pay Rasool? 43
64. SOME LUCK! A society of farmers who own farms in the vicinity of my home town Bangalore, planned on holding a raffle and persuaded me to buy a ticket. The value of the ticket was Rs. 5. As I did not want to pay the entire amount myself, I asked my friend Radha to chip in with me, and offered to share with her in proportion the prize bounty— if there was going to be any. She paid Rs. 2 and I paid the rest. As luck would have it—Bingo!.. we won the first prize—a flock of 50 sheept Good God!.. Niether of us knew what to do with the sheep.. Where would we take them in the first place? Neither of us had had any train- ing as shepherds! So we decided to sell the sheep back to the farmers. As per our original understanding 20 of the sheep belonged to Radha and 30 were mine. However, I decided that we had won the prize because of our combined luck, and so we should divide its value equally. The sheep—30 of mine and 20 of Radha's—were sold, each at the same-price, and I paid her Rs. 150 to make the sum equal. What was the value per sheep? 44
65. THE FAULTY WATCH One day I found a strange thing happening to my watch—the minute hand and the hour hand were coming together every sixty-five minutes. I decided to have it seen to. Was my watch gaining or losing time, and how much per hour? 66. THE TRAINS AND THE FALCON Two trains start towards each other from two stations SO miles apart, at the same time and on a single track. Just when the trains' start out, a falcon leaves the first train and flies directly to the other train, and as soon as it reaches the second train, the bird starts back towards the first train. It continues doing so, flying backwards and forwards from one train to the other until the trains meet. Both the trains travel at a speed of 25 miles per hour, and the bird flies at 100 miles per hour. How many miles will the falcon have flown before the trains met? 45
67. WHICH IS MORE LUCRATIVE? A businessman advertised two job openings for peons in his firm. Two men applied and the businessman decided to engage both or them. He offered them a salary of Rs. 2,000 per year; Rs. 1,000 to be paid every half year, with a promise that their salary would be raised if their work proved satisfactory. They could have a raise of Rs. 300 per year, or if they preferred, Rs. 300 each half year. The two men thought for a few moments and then one of them expressed his wish to take the raise at Rs 300 per year, while the other man said he would accept the half yearly increase of Rs. 100. Between the two men, who was the gainer, and by how much? 68. LITTLE MAMMU AND THE MARBLES Little Mammu was playing marbles with her friend Nawal I heard her say to him, 'if you give me one of your marbles I'll have as many as you.' Nawal replied, 'you give me one of your marbles, and I'll have twice as many as you.' I wondered how many marbles each had! What do you think? 46
69. A FAMILY MATTER Fifteen years back my neighbour Mrs. Sareen had three daughters Sudha, Seema and Reema—and their combined ages were half of hers. During the next five years Sonny was born and Mrs. Sareen's age equalled the total of all her children's ages. After some years Kishu was born and then Sudha was as old as Reema and Sonny together. And now, the combined age of all the children is double Mrs. Sareen's age, which is, as a matter of fact, only equal to that of Sudha and Seema together. Sudha's age is also equal to that of the two sons. What is the age of each one of them? 70. THE HIGH-RISE . While in Canada, I visited a beautiful hjgh-rise building in the Metropolitan City of Toronto. The manager of the building told me that the building consisted of different kinds of apartments large and small. Two room apartments were 5% in number, 24's—7% in number, 3's—15% in number, 3£'s—20% in number, 4**8—49% in number, 5's—33% in number, 5i's—12% in number, 6's—3% in number and in addition several 4 room apart- ments. Altogether the building contained 437 apart- ments. Can you figure out how many apartments are there in eacb type, using round figures? 47
71. THE CURIOUS LICENSE PLATE When I acquired my Mercedes-Benz car in Germany, the first thing I had to do was to get a license plate. The plate I got had a peculiar number on it. It consisted of 5 different numbers and by mistake when I fixed it upside down the number could be still read, but the value had increased by 78633. What was my actual license number? 72. LOOSE OR GAIN A man I know runs a workshop in Calcutta. He bought two lathes to use in his workshop. However, he found out afterwards that they did not serve the purpose for which he had bought them, and so he decided to sell them. He sold them each for Rs. 600 making a loss of 20% on one of them and a profit of 20% on the other. Did he lose or gain in the transaction, and how much did each machine cost him? 48